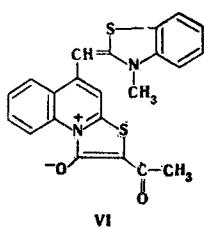


THIAZOLO[3,2-a]QUINOLINIUM 1-OXIDE DERIVATIVES


L. T. Gorb, N. N. Romanov,
and A. I. Tolmachev

UDC 547.789.61'825.836

It was found that acetyl derivatives IIa,b [IIa, 66% yield, mp 255°C (from pyridine), λ_{\max} (log ϵ) in CH_3CN : 293 (3.79) and 452 (4.04); IIb, 72% yield, mp 250°C (from pyridine), λ_{\max} (log ϵ): 288 (4.18) and 452 (4.28)] rather than compounds of the III type, as was assumed in [1], are formed when a mixture of 1 mmole of (2-quinolylthio)acetic acids (Ia,b) and 5 ml of acetic anhydride is heated to the boiling point. Compounds III were obtained when the reaction was carried out in a mixture of 1 ml of acetic anhydride and 2 ml of acetic acid [IIIa, 60% yield, mp 209–210°C (from Ac_2O), λ_{\max} (log ϵ): 297 (3.96), 328 (3.87), and 455 nm (4.22); IIIb, 65% yield, mp 205°C (from pyridine), λ_{\max} (log ϵ): 297 (4.05), 328 (3.93), and 452 nm (4.30)].

The initial products are evidently the unstable thiazolo[3,2-a]quinolinium 1-oxide (IVa,b), which, depending on the conditions, are acetylated or undergo dimerization. In fact, if one carries out the cyclization of 1 mmole of Ia in 10 ml of acetic acid and 0.3 ml of acetic anhydride in the presence of an electrophilic agent such as 3-ethyl-2-(acetanilidovinyl)benzothiazolium iodide, 2-substituted thiazolo[3,2-a]quinolinium 1-oxides [V, 62% yield, mp 256°C (from Ac_2O), λ_{max} 588 nm ($\log \epsilon$ 4.80)] can be isolated. A dye of a different type (VI) was obtained from acetyl derivative IIb (1 mmole) and 2-methylthio-3-methylbenzothiazolium methylsulfate (1 mmole) in a mixture of 3 ml of pyridine, 3 ml of acetic anhydride, and 0.25 ml of triethylamine [68% yield. mp 250°C (from Ac_2O), λ_{max} 566 nm ($\log \epsilon$ 4.63) (in nitromethane)].

The compounds obtained are stable substances. The tendency of thiazolo[3,2-a]quinolinium 1-oxide to undergo reactions with electrophilic agents and dimerization follows from its molecular diagram calculated by the MO LCAO method within the Pariser - Parr - Pople approximation.

The structure of the synthesized compounds were confirmed by the PMR and mass spectra. The results of elementary analysis for N and S were in agreement with the calculated values.

LITERATURE CITED

K. T. Potts and D. R. Choudhury, *J. Org. Chem.*, 43, 2700 (1978).

Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev 252660. Translated from *Khimiya Geterotsiklicheskikh Soedinenii*, No. 7, pp. 989-990, July, 1979. Original article submitted December 20, 1978.